Lingwen Liao

  • Citations Per Year
Learn More
Structural control of branched nanocrystals allows tuning two parameters that are critical to their catalytic activity--the surface-to-volume ratio, and the number of atomic steps, ledges, and kinks on surface. In this work, we have developed a simple synthetic system that allows tailoring the numbers of branches in Pt nanocrystals by tuning the(More)
The 18-electron shell closure structure of Au nanoclusters protected by thiol ligands has not been reported until now. Herein, we synthesize a novel nanocluster bearing the same gold atom number but a different thiolate number as another structurally resolved nanocluster Au44(TBBT)28 (TBBTH = 4-tert-butylbenzenelthiol). The new cluster was determined to be(More)
Controlling the dopant type, number, and position in doped metal nanoclusters (nanoparticles) is crucial but challenging. In the work described herein, we successfully achieved the mono-cadmium doping of Au25 nanoclusters, and revealed using X-ray crystallography in combination with theoretical calculations that one of the inner-shell gold atoms of Au25 was(More)
It remains a grand challenge to achieve both high activity and durability in Pt electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Here we develop a class of Pt highly concave cubic (HCC) nanocrystals, which are enriched with high-index facets, to enable high ORR activity. The durability of HCC nanocrystals can be significantly improved via(More)
In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni₆(SCH₂CH₂Ph)₁₂, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis(More)
Tiara-like thiolated group 10 transition metal (Ni, Pd, Pt) nanoclusters have attracted extensive interest due to their fundamental scientific significance and potential application in a number of fields. However, the properties (e.g. the absorption) evolution with the ring size's increase was not investigated so far to our best knowledge, due to the(More)
Controlling the bimetal nanoparticle with atomic monodispersity is still challenging. Herein, a monodisperse bimetal nanoparticle is synthesized in 25% yield (on gold atom basis) by an unusual replacement method. The formula of the nanoparticle is determined to be Au24Hg1(PET)18 (PET: phenylethanethiolate) by high-resolution ESI-MS spectrometry in(More)
It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster(More)
We report the size-dependent reactivity of phenylethanethiolated gold nanoparticles with acetic acid. Employing this reactivity, we synthesize a novel nanocluster Au38(PET)26 (PET: phenylethanethiolate), which is otherwise difficult to obtain and exhibits remarkably different photoluminescence and electrochemical properties compared with the well-known(More)
Support with pom poms: A hybrid material ([Co(4)(H(2)O)(2)(PW(9)O(34))(2)](10-)/mesoporous carbon nitride) is prepared as an efficient water oxidation catalyst, and shows excellent catalytic activity for water oxidation. Mesoporous carbon nitride as an immobilization matrix improves the catalytic water oxidation activity and structural durability of the(More)