Learn More
Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are(More)
RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing(More)
The development of resistance to chemotherapeutic drugs is a major obstacle to the successful treatment of breast cancer. Ways to block or overcome this resistance are objects of intense research. We have previously shown that cancer cells selected for resistance against chemotherapeutic drugs or isolated from metastatic tumor sites have high levels of a(More)
Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis,(More)
Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we show that increased Zeste homolog 2 (EZH2) expression in either tumor cells or in tumor vasculature is predictive of poor clinical outcome. The increase in endothelial EZH2 is a direct result of VEGF stimulation by a paracrine circuit(More)
Tissue transglutaminase (TG2, EC 2.3.2.13) is a ubiquitous enzyme that catalyzes Ca2+-dependent post-translational modification of proteins by inserting highly stable (epsilon-[gamma-glutamyl] lysine) isopeptide bonds or by conjugating polyamines at selected peptide-bound glutamine residues. The TG2-catalyzed cross-linked products (generally high molecular(More)
BACKGROUND Alterations in the extracellular matrix (ECM) can affect host-tumor interactions and tumor growth and metastasis. Tissue transglutaminase (TG2, EC 2.3.2.13), a calcium-dependent enzyme that catalyzes covalent cross-linking of proteins, can render the ECM highly stable and resistant to proteolytic degradation. So we determined whether TG2(More)
During development inhibitor of DNA-bind-2 (Id2) regulates proliferation and differentiation. Id2 expression has been detected in cancer cells, yet its cellular function and validity as a therapeutic target remains largely unknown. Immunohistochemical analysis of colorectal cancer (CRC) specimens revealed that Id2 was undetectable in normal colonic mucosa,(More)
PURPOSE The effects of reproductive hormones on ovarian cancer growth are not well understood. Here, we examined the effects of estrous cycle variation and specific reproductive hormones on ovarian cancer growth. EXPERIMENTAL DESIGN We investigated the role of reproductive hormones in ovarian cancer growth using both in vivo and in vitro models of tumor(More)
Targeting kinases is central to drug-based cancer therapy but remains challenging because the drugs often lack specificity, which may cause toxic side effects. Modulating side effects is difficult because kinases are evolutionarily and hence structurally related. The lack of specificity of the anticancer drug imatinib enables it to be used to treat chronic(More)