Lingchun Song

Learn More
A previous article proposed an electronic structure-based polarizable potential, called the explicit polarization (X-POL) potential, to treat many-body polarization and charge delocalization effects in polypeptides. Here, we present a variational version of the X-POL potential, in which the wave function of the entire molecular system is variationally(More)
A theoretical model is presented for deriving effective diabatic states based on ab initio valence bond self-consistent field (VBSCF) theory by reducing the multiconfigurational VB Hamiltonian into an effective two-state model. We describe two computational approaches for the optimization of the effective diabatic configurations, resulting in two ways of(More)
The explicit polarization (X-Pol) potential is an electronic-structure-based polarization force field, designed for molecular dynamics simulations and modeling of biopolymers. In this approach, molecular polarization and charge transfer effects are explicitly treated by a combined quantum mechanical and molecular mechanical (QM/MM) scheme, and the wave(More)
Combined QM(PM3)/MM molecular dynamics simulations together with QM(DFT)/MM optimizations for key configurations have been performed to elucidate the enzymatic catalysis mechanism on the detoxification of paraoxon by phosphotriesterase (PTE). In the simulations, the PM3 parameters for the phosphorous atom were reoptimized. The equilibrated configuration of(More)
An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed(More)
You need to cite the references of XMVB as following formats when the calculations are proc-ceded with XMVB program. A) J. Chem. Phys. format: The ab initio Valence Bond calculations are performed with the XMVB program. The ab initio Valence Bond calculations are performed with the XMVB program. XMVB version 2.0 is a program that performs ab initio valence(More)
An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions for the energy gradients with respect to the orbital(More)
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with(More)
An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB) method is described to obtain an accurate potential energy surface for chemical reactions. Building upon previous results on the construction of diabatic and adiabatic potential surfaces using ab initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale(More)
Proton, hydride and hydrogen-atom transfer reactions are ubiquitous in biological processes, 1 and because of their relatively small mass, zero-point energy and quantum tunnelling are significant in determining free-energy reaction barriers. 2,3 The incorporation of nuclear quantum effects (NQE) is also important for reactions involving heavy atoms since(More)