Lingan Kong

  • Citations Per Year
Learn More
In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle(More)
Crop residue retention is a key component of sustainable cropping systems. In recent years, retention of crop residue is a means of improving soil quality and nutrient capacity and reducing the adverse effects of residue burning. Maize–wheat rotation is a major double-cropping system practiced on more than one fifth of agricultural lands worldwide.(More)
In this study, field-grown wheat (Triticum aestivum L.) was treated with normal (Nn) and excessive (Ne) levels of fertilizer N. Results showed that Ne depressed the activity of superoxide dismutase and peroxidase and increased the accumulation of reactive oxygen species (ROS) and malondialdehyde. The normalized difference vegetation index (NDVI) was higher(More)
In this work, we investigated the inhibitory effects of water-soluble phenolic compounds (WSPCs) in the coat of after-ripening wheat (Triticum aestivum L.) seeds on the processes of germination and peroxidase reactivation. Wheat bran has a WSPC content of 862.5 μg gallic acid equivalent g−1 dry weight. When seeds were incubated in the water extract of bran,(More)
The non-leaf photosynthetic organs have recently attracted much attention for the breeding and screening of varieties of cereal crops to achieve a high grain yield. However, the glume photosynthetic characteristics and responses to high temperature at the late stages of grain filling are not well known in winter wheat (Triticum aestivum L.). In the present(More)
Nitrogen (N) uptake is the first step in nitrate assimilation, and efficient N uptake is essential for plant growth, especially for protein biosynthesis and photosynthetic activities. In cereals, improved N uptake is closely coupled with an increase in nitrogen use efficiency (NUE) and yield improvements. Because wheat (Triticum aestivum L.) is a leading(More)
CdS heterostructure nanomaterials are attractive for their potential applications in integrated optoelectronic devices. Herein, the high-quality CdS/CdS:SnS2 superlattice nanowires were synthesized through a micro-environmental controlled co-evaporation technique, which shows periodic emission properties and that their structures are periodic and(More)
It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N(More)
  • 1