Learn More
Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acids to form epoxyeicosatrienoic acids (EETs), which possess various beneficial effects on the cardiovascular system. However, whether increasing EETs production by CYP2J2 overexpression in vivo could prevent abdominal aortic aneurysm (AAA) remains unknown. Here we investigated the effects of(More)
BACKGROUND Cell senescence is central to a large body of age related pathology, and accordingly, cardiomyocytes senescence is involved in many age related cardiovascular diseases. In consideration of that, delaying cardiomyocytes senescence is of great importance to control clinical cardiovascular diseases. Previous study indicated that bradykinin (BK)(More)
The cytochrome P450 epoxygenase, CYP2J2, converts arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs), which are highly abundant in the kidney and considered renoprotective. Accumulating evidence suggests that EETs are important in regulating renal and cardiovascular function. Further, EETs have been confirmed to exert diverse biological(More)
OBJECTIVE Accumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin(More)
The tissue kallikrein-kinin system is important in regulating cardiovascular and renal function, and dysregulation of the system has been implicated in heart and kidney pathologies. These findings suggest that if balance can be restored to the kallikrein-kinin axis, then associated disease progression may be attenuated. To test this hypothesis, recombinant(More)
Clonidine 2 mg/kg ig inhibited the rat gastric ulcers induced by pyloric ligation, stress and indomethacin by 71%, 77% and 82%, respectively. Clonidine 2 mg/kg ig tended to accelerate the healing of gastric ulcer induced by acetic acid, and the healing rate was 61%. Clonidine decreased the secretion of gastric acid and pepsin, and increased the release of(More)
UNLABELLED Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying(More)
Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) have multiple biological functions in cardiovascular homeostasis. The antiinflammatory, anti-migratory and pro-proliferative effects of EETs suggest a possible beneficial role for EETs in the apoptosis, proliferation and migration of pulmonary vascular cells. In this study, we investigated(More)
Epoxyeicosatrienoic acids (EET), the primary arachidonic acid metabolites of cytochrome P450 2J (CYP2J) epoxygenases, possess potent vasodilatory, anti-inflammatory, antiapoptotic, and mitogenic effects. To date, little is known about the role of CYP2J2 and EETs in tumor necrosis factor (TNF)-α-induced cardiac injury. We utilized cell culture and in vivo(More)
Pulmonary arterial hypertension (PAH) is a life-threatening disease that leads to progressive pulmonary hypertension, right heart failure, and death. Endothelial dysfunction and inflammation were implicated in the pathogenesis of PAH. Epoxyeicosatrienoic acids (EETs), products of the cytochrome P450 epoxygenase metabolism of arachidonic acid, are potent(More)