Learn More
With the invention of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use. The complementary nature of the depth and visual information provided by the Kinect sensor opens up new opportunities to solve fundamental problems in computer vision. This paper presents a comprehensive review(More)
Single image haze removal has been a challenging problem due to its ill-posed nature. In this paper, we propose a simple but powerful color attenuation prior for haze removal from a single input hazy image. By creating a linear model for modeling the scene depth of the hazy image under this novel prior and learning the parameters of the model with a(More)
Over the last few years, with the immense popularity of the Kinect, there has been renewed interest in developing methods for human gesture and action recognition from 3D skeletal data. A number of approaches have been proposed to extract representative features from 3D skeletal data, most commonly hard wired geometric or bio-inspired shape context(More)
We present a system to classify the gesture from only one learning example. The inputs are duo-modality, i.e. RGB and depth sensor from Kinect. Our system performs morphological denoising on depth images and automatically segments the temporal boundaries. Features are extracted based on Extended-Motion-History-Image (Extended-MHI) and the Multi-view(More)
Fall detection is a major challenge in the public health care domain, especially for the elderly, and reliable surveillance is a necessity to mitigate the effects of falls. The technology and products related to fall detection have always been in high demand within the security and the health-care industries. An effective fall detection system is required(More)
We present a novel spatiotemporal saliency detection method to estimate salient regions in videos based on the gradient flow field and energy optimization. The proposed gradient flow field incorporates two distinctive features: 1) intra-frame boundary information and 2) inter-frame motion information together for indicating the salient regions. Based on the(More)
Multi-core processors are widely used in computer systems. As the performance of microprocessors greatly exceeds that of memory, the memory wall becomes a limiting factor. It is important to understand how the large disparity of speed between processor and memory influences the performance and scalability of Java applications on emerging multi-core(More)
A recent trend of research has shown how contextual information related to an action, such as a scene or object, can enhance the accuracy of human action recognition systems. However, using context to improve unsupervised human action clustering has never been considered before, and cannot be achieved using existing clustering methods. To solve this(More)