Linette Prawirodirdjo

Learn More
Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock,(More)
The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of(More)
[1] We describe the detection of teleseismic surface waves from the 3 November 2002 Mw 7.9 Denali fault earthquake in Alaska with a dense network of 1 Hz GPS stations in southern California, about 3900 km from the event. Relative horizontal displacements with amplitudes in excess of 15 mm and duration of 700 seconds agree with integrated velocities recorded(More)
Seismic rupture produced spectacular tectonic deformation above a 400-kilometer strip of the Sunda megathrust, offshore northern Sumatra, in March 2005. Measurements from coral microatolls and Global Positioning System stations reveal trench-parallel belts of uplift up to 3 meters high on the outer-arc islands above the rupture and a 1-meter-deep subsidence(More)
We determine coseismic and the first-month postseismic deformation associated with the Sumatra–Andaman earthquake of 26 December 2004 from near-field Global Positioning System (GPS) surveys in northwestern Sumatra and along the Nicobar-Andaman islands, continuous and campaign GPS measurements from Thailand and Malaysia, and in situ and remotely sensed(More)
  • 1