Line Vikingsson

  • Citations Per Year
Learn More
Some of the problems raised by the combination of porous scaffolds and self-assembling peptide (SAP) gels as constructs for tissue engineering applications are addressed for the first time. Scaffolds of poly(ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The(More)
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under loading. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has scarcely been addressed. The fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin(More)
Scaffolds of poly(ethyl acrylate) (PEA) with interconnected cylindrical orthogonal pores filled with a self-assembling peptide (SAP) gel are here proposed as patches for infarcted tissue regeneration. These combined systems aim to support cell therapy and meet further requirements posed by the application: the three-dimensional architecture of the(More)
The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance,(More)
In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The(More)
PURPOSE Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. METHODS The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral(More)
This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage(More)
A model is proposed to assess mechanical behavior of tissue engineering scaffolds and predict their performance "in vivo" during tissue regeneration. To simulate the growth of tissue inside the pores of the scaffold, the scaffold is swollen with a Poly (Vinyl alcohol) solution and subjected to repeated freezing and thawing cycles. In this way the Poly(More)
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied(More)
  • 1