Learn More
Genome-wide association study (GWAS) has become an obvious general approach for studying traits of agricultural importance in higher plants, especially crops. Here, we present a GWAS of 32 morphologic and 10 agronomic traits in a collection of 615 barley cultivars genotyped by genome-wide polymorphisms from a recently developed barley oligonucleotide pool(More)
Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome(More)
While the possible sources underlying the so-called ‘missing heritability’ evident in current genome-wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal of understanding the(More)
BACKGROUND Affymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical(More)
An international consortium has launched the whole-genome sequencing of potato, the fourth most important food crop in the world. Construction of genetic linkage maps is an inevitable step for taking advantage of the genome projects for the development of novel cultivars in the autotetraploid crop species. However, linkage analysis in autopolyploids, the(More)
Expression divergence of duplicate genes is widely believed to be important for their retention and evolution of new function, although the mechanism that determines their expression divergence remains unclear. We use a genetical genomics approach to explore divergence in genetical control of yeast duplicate genes created by a whole-genome duplication that(More)
A comment on D Vitkup, P Kharchenko and A Wagner: Influence of metabolic network structure and function on enzyme evolution. Recently, Vitkup et al. [1] investigated the influence of the yeast metabolic network structure and function on enzyme evolution. They calculated connectivity for each enzyme as the number of other metabolic enzymes that produce or(More)
The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. We here present a next-generation sequencing (NGS)-based(More)
MicroRNAs (miRNAs) have recently been recognized as targets for anti-metastatic therapy against cancer malignancy. Development of effective miRNA mediated therapies remains a challenge to both basic research and clinical practice. Here we presented the evidence for a miR-708-5p mediated replacement therapy against metastatic lung cancer. Expression of(More)
Recently, the debate on the centrality-lethality rule is resolved by the "second-generation" high-throughput Y2H data from the yeast interactome network, which suggests no significant correlation between the degree of connectedness and essentiality of proteins. However, it is still not clear why essential proteins strongly tend to interact with each other.(More)