Lindong Weng

Learn More
The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their(More)
Thermodynamic and kinetic models can provide a wealth of information on the physical response of living cells and tissues experiencing cryopreservation procedures. Both isothermal and nonisothermal models have been proposed so far, accompanied by experimental verification and cryoapplications. But the cryoprotective solution is usually assumed to be dilute(More)
Recently there has been considerable interest in developing sugar glasses that enable storage of biologics without refrigeration. Microfiber filter papers are good substrates for drying biologics in the presence of sugar glass-formers, providing for an even distribution of samples and an enhanced surface area for drying, but the opaqueness prevents(More)
Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of(More)
The state of intracellular water is important in all phases of cryopreservation. Intracellular water can be transported out of the cell, transferred into its solid phase, or blocked by cryoprotectants and proteins in the cytoplasm. The purpose of the present study is to determine the amount of hydrogen-bonded water in aqueous ethylene glycol and glycerol(More)
Approximately a decade ago it was observed that adding a small amount (5 wt %) of glycerol to trehalose could substantially improve the stability of enzymes stored in these glasses even though the final glass transition temperature (Tg) was reduced by ∼20 K. This finding inspired great interest in the fast dynamics of dehydrated trehalose/glycerol mixtures,(More)
Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage(More)
Semi- and selective permeability is a fundamentally important characteristic of the cell membrane. Membrane permeability can be determined by monitoring the volumetric change of cells following exposure to a non-isotonic environment. For this purpose, several microfluidic perfusion chambers have been developed recently. However, these devices only allow the(More)
Quantitative analyses of the bound water content in the alcohol aqueous solution and its osmotic behavior should be cryobiologically significant. This paper has presented two applications of the thermogram of the alcohol/water system recorded by differential scanning calorimeter (DSC). Both applications are: (1) generating the quantitative relationship(More)
Cryopreservation requires quantitatively analytical models to simulate the biophysical responses of biomaterials during cryopreservation. The Mazur model and other improved ones, such as Karlsson model concerning solutions containing cryoprotectants (CPA), are somehow precluded by some minor points, particularly, the assumption of ideal solutions. To avoid(More)