Linda Stegemann

Learn More
A series of DNA double helices containing different numbers of silver(I)-mediated base pairs involving the artificial nucleobases imidazole or 2-methylimidazole has been applied for the generation of DNA-templated silver nanoclusters. The original Ag(I)-containing nucleic acids as well as the resulting nanoclusters and nanoparticles have been characterized(More)
Herein, we report on the implementation of photofunctional surfaces for the investigation of cellular responses by means of quantitative fluorescence microscopy. The developed substrates are able to produce reactive oxygen species under the fluorescence microscope upon irradiation with visible light, and the behavior of cells grown on these surfaces can be(More)
Quantum dots that efficiently emit white light directly or feature a "candle-like" orange photoluminescence with a high Stokes shift are presented. The key to obtaining these unique emission properties is through controlled annealing of the core Cu-In-Ga-S quantum dots in the presence of zinc ions, thus forming Zn-Cu-In-Ga-S solid solutions with different(More)
Novel organic-inorganic hybrid materials comprising nanoscaled layered silicates and native aluminium hydroxide phthalocyanine (Al(OH)Pc) allowed for the first time the exploitation of their unique photophysical properties in aqueous ambience. In particular, we were able to observe the efficient emission of Al(OH)Pc-nanoclay hybrids and generation of(More)
A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye(More)
Fluorescent β-cyclodextrin vesicles (β-CDV) that display host cavities available for host-guest interactions at the vesicle surface were prepared by incorporation of the hydrophobic spirobifluorene-based dye 1 into the membrane of unilamellar vesicles. Fluorescence quenching of dye 1 was observed in the presence of different quenchers. Methyl viologen 2(More)
The first C-H bond activation with pyridotriazoles as coupling partners is presented using a Rh(III) catalyst. The pyridotriazoles can be used as new carbene precursors in C-H activation for direct access to novel fluorescent scaffolds. These tunable fluorophores can be applied for the detection of metal ions.
A versatile design strategy is presented towards new monoanionic pincer luminophores, showing that cyclometallating C^N^N ligands can yield phosphorescent Pt(ii) complexes even if a neutral 1,2,3-triazole ring is inserted by click chemistry. The overall charge, intermolecular interactions and excited state properties can be manipulated and controlled by(More)
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2 (L-Et)](PF6 )2 , [Ag2 (L-Bu)](PF6 )2 , [Au2 (L-Et)](PF6 )2 , and [Au2 (L-Bu)](PF6 )2 . The tetraimidazolium salts show almost no fluorescence (ΦF <1 %) in(More)