Learn More
The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive(More)
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the(More)
Ciliates, although single-celled organisms, contain numerous subcellular structures and pathways usually associated with metazoans. How this cell biological complexity relates to the evolution of molecular elements is unclear, because features in these cells have been defined mainly at the morphological level. Among these ciliate features are structures(More)
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline(More)
Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of(More)
BACKGROUND The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes.(More)
We have measured methylation of the albumin gene in clones of rat hepatoma cells that vary quantitatively in their rates of synthesis of albumin and in variant and hybrid cells that produce no albumin. Although the albumin gene is undermethylated for its entire length in rat liver, only the 5' end is ever undermethylated in hepatoma cells. Moreover,(More)
ParameciumDB (http://paramecium.cgm.cnrs-gif.fr) is a new model organism database associated with the genome sequencing project of the unicellular eukaryote Paramecium tetraurelia. Built with the core components of the Generic Model Organism Database (GMOD) project, ParameciumDB currently contains the genome sequence and annotations, linked to available(More)
A consortium of laboratories undertook a pilot sequencing project to gain insight into the genome of Paramecium. Plasmid-end sequencing of DNA fragments from the somatic nucleus together with similarity searches identified 722 potential protein-coding genes. High gene density and uniform small intron size make random sequencing of somatic chromosomes a(More)