Learn More
Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched(More)
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the amplification of a polyglutamine stretch at the N terminus of the huntingtin protein. N-terminal fragments of the mutant huntingtin (mHtt) aggregate and form intracellular inclusions in brain and peripheral tissues. Aggregates are an important hallmark of the disease,(More)
Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT(More)
Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235(More)
Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find(More)
Huntington's disease (HD) is a late-onset, neurodegenerative disease for which there are currently no cures nor disease-modifying treatments. Here we report the identification of several potential anti-inflammatory targets for HD using an ex vivo model of HD that involves the acute transfection of human mutant huntingtin-based constructs into rat brain(More)
We have examined the roles of pap DNA methylation patterns in the regulation of the switch between phase ON and OFF pyelonephritis-associated pili (Pap) expression states in E. coli. Two Dam methyltransferase sites, GATC1028 and GATC1130, were shown previously to be differentially methylated in phase ON versus phase OFF cells. In work presented here, these(More)
FoxA transcription factors are central regulators of gut development in all animals that have been studied. Here we examine the sole Caenorhabditis elegans FoxA protein, which is called pha-4. We describe the molecular characterization of five pha-4 mutations and characterize their associated phenotypes. Two nonsense mutations are predicted to truncate(More)
In Huntington's disease (HD), mutated huntingtin (mhtt) causes striatal neurodegeneration which is paralleled by elevated microglia cell numbers. In vitro corticostriatal slice and primary neuronal culture models, in which neuronal expression of mhtt fragments drives HD-like neurotoxicity, were employed to examine wild type microglia during both the(More)
BACKGROUND Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation(More)