Learn More
The neuropeptide galanin regulates a variety of physiological and pathophysiological processes through three G protein coupled receptors, GalR1, GalR2, and GalR3. The studies on galanin receptor subtype specific effects have been hampered by the lack of high affinity subtype selective antagonist and/or agonist to any of these three galanin receptor(More)
The chimeric peptide M617, galanin(1–13)-Gln14-bradykinin(2–9)amide, is a novel galanin receptor ligand with increased subtype specificity for GalR1 and agonistic activity in cultured cells as well as in vivo. Displacement studies on cell membranes expressing hGalR1 or hGalR2 show the presence of a high affinity binding site for M617 on GalR1 (Ki=0.23±.12(More)
The present study on rat examined the role of galanin receptor subtypes in regulation of depression-like behavior as well as potential molecular mechanisms involved in the locus coeruleus (LC) and dorsal raphe (DR). The effect of intracerebroventricular (i.c.v.) infusion of galanin or galanin receptor GalR1- and GalR2-selective ligands was studied in the(More)
We have examined the effect of systemically administered galnon, a novel low-molecular weight agonist of galanin receptors, on neuropathic pain-like behaviors in rats after photochemically induced partial nerve injury. Galnon is a galanin receptor ligand with moderate affinity to spinal cord membranes (K(D) of 6+/-0.6 microM). While intraperitoneally(More)
Galanin is a highly inducible neuropeptide, showing distinct up-regulation after pathological disturbance within the nervous system. Significant increase in galanin expression is observed after peripheral nerve injury, in the basal forebrain in Alzheimer’s disease (AD), during neuronal development, and after stimulation with estrogen, while seizure activity(More)
Galanin and its three receptors have been linked to a wide variety of physiological processes and are distributed in both the central and peripheral nervous systems. Further knowledge of the properties of galanin-activated signaling systems can best be obtained by the availability of peptide and non-peptide ligands that are selective for the different(More)
The search for antiepileptic drugs that are capable of blocking the progression of epilepsy (epileptogenesis) is an important problem of translational epilepsy research. The neuropeptide galanin effectively suppresses acute seizures. We examined the ability of hippocampal galanin receptor type 1 (GalR1) and type 2 (GalR2) to inhibit kindling epileptogenesis(More)
The galanin peptide family and its three receptors have with compelling evidence been implicated in several high-order physiological disorders. The co-localization with other neuromodulators and the distinct up-regulation during and after pathological disturbances has drawn attention to this neuropeptide family. In the current study we present data on(More)
The neuropeptide galanin and galanin receptors are widespread throughout cortical, limbic and midbrain areas implicated in reward, learning/memory, pain, drinking and feeding. While many studies have shown that galanin produces a variety of presynaptic and post-synaptic responses, work studying the effects of galanin on neural activation is limited. The(More)
Galnon was first reported as a low molecular weight non-peptide agonist at galanin receptors [Saar et al. (2002) Proc. Natl. Acad. Sci. USA 99, 7136-7141]. Following its systemic administration, this synthetic ligand affected a range of important physiological processes including appetite, seizures and pain. Physiological activity of galnon could not be(More)