Learn More
Diabetic nephropathy (DN) remains a major complication in both type 1 and type 2 diabetes. Systemic administration of antitransforming growth factor-beta (TGF-beta) antibody has shown some promise in mouse models of DN. However, chronic blockade of the multifunctional TGB-beta could be problematic. Several downstream effects of TGF-beta are mediated by(More)
Dose response and time course of the effects of TGF-on RNA levels of various genes. Dose response. MMC were treated with 0, 2, 5 or 10 ng/ml of TGF- for 24 hours. Expression levels of miR-192 (a), RP23 (b), miR-216a (c), miR-217 (d), Zeb1 (e), Zeb2 (f), Col1a2 (g) and Pten (h) were examined by RT-qPCR (mean and s.e.m., n=3). Time course. MMC were treated(More)
Elevated p53 expression is associated with several kidney diseases including diabetic nephropathy (DN). However, the mechanisms are unclear. We report that expression levels of transforming growth factor-β1 (TGF-β), p53, and microRNA-192 (miR-192) are increased in the renal cortex of diabetic mice, and this is associated with enhanced glomerular expansion(More)
OBJECTIVE Vascular smooth muscle cells (VSMC) from type 2 diabetic db/db mice exhibit enhanced proinflammatory responses implicated in accelerated vascular complications. We examined the role of microRNA(miR)-200 family members and their target Zeb1, an E-box binding transcriptional repressor, in these events. METHODS AND RESULTS The expression levels of(More)
Epigenetic mechanisms such as chromatin histone H3 lysine methylation and acetylation have been implicated in diabetic vascular complications. However, histone modification profiles at pathologic genes associated with diabetic nephropathy in vivo and their regulation by the angiotensin II type 1 receptor (AT1R) are not clear. Here we tested whether(More)
OBJECTIVE Diabetes remains a major risk factor for vascular complications that seem to persist even after achieving glycemic control, possibly due to "metabolic memory." Using cultured vascular smooth muscle cells (MVSMC) from type 2 diabetic db/db mice, we recently showed that decreased promoter occupancy of the chromatin histone H3 lysine-9(More)
Transforming growth factor-β1 (TGF-β1)-induced expression of plasminogen activator inhibitor-1 (PAI-1) and p21 in renal mesangial cells (MCs) plays a major role in glomerulosclerosis and hypertrophy, key events in the pathogenesis of diabetic nephropathy. However, the involvement of histone acetyl transferases (HATs) and histone deacetylases (HDACs) that(More)
Vascular smooth muscle cells (VSMCs) express functional interleukin-18 receptors (IL-18Rs), composed of alpha and beta subunits. These subunits are elevated in VSMCs of atherosclerotic plaques and can be induced by inflammatory agents in cultured VSMC. Because both IL-18 and Angiotensin II (Ang II) are implicated in atherosclerosis, our objective was to(More)
RATIONALE Misregulation of angiotensin II (Ang II) actions can lead to atherosclerosis and hypertension. Evaluating transcriptomic responses to Ang II in vascular smooth muscle cells (VSMCs) is important to understand the gene networks regulated by Ang II, which might uncover previously unidentified mechanisms and new therapeutic targets. OBJECTIVE To(More)
Diabetes is associated with enhanced inflammatory responses and cardiovascular complications such as atherosclerosis. However, it is unclear whether similar responses are present in cells derived from experimental animal models of diabetes. We examined our hypothesis that macrophages and short-term cultured vascular smooth muscle cells (VSMCs) derived from(More)