Learn More
The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metabolism. Over 600 encoded proteins have been identified, cataloged, and classified according to predicted function, subcellular location, and alternative splicing. At least one-third of these proteins were previously annotated as "unknown function" or with functions(More)
Traditionally, phenotype-driven forward genetic plant mutant studies have been among the most successful approaches to revealing the roles of genes and their products and elucidating biochemical, developmental, and signaling pathways. A limitation is that it is time consuming, and sometimes technically challenging, to discover the gene responsible for a(More)
The Chloroplast 2010 Project (http://www.plastid.msu.edu/) identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be(More)
Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of(More)
Expression of a plant lauroyl-acyl carrier protein (ACP) thioesterase in an Escherichia coli strain deficient in beta oxidation results in the accumulation of free fatty acids in the culture. Overall fatty acid production by the cultures is increased severalfold, particularly in the late log and stationary stages of growth. In control E. coli cells,(More)
In traditional mutant screening approaches, genetic variants are tested for one or a small number of phenotypes. Once bona fide variants are identified, they are typically subjected to a limited number of secondary phenotypic screens. Although this approach is excellent at finding genes involved in specific biological processes, the lack of wide and(More)
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ-subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc)(More)
Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more(More)
The plastid acetyl-coenzyme A carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis and in most plants is present as a heteromeric complex of at least four different protein subunits: the biotin carboxylase (BC), the biotin carboxyl carrier protein, and the alpha and beta subunits of the carboxyltransferase. To gain insight into(More)
As part of a project to analyze chloroplast functional networks systematically, we have subjected mutants in >3,200 nuclear genes predicted to encode chloroplast-targeted proteins in Arabidopsis thaliana (http://www.plastid.msu.edu) to parallel phenotypic assays. Detailed methods are presented for the various assays being used in this project to study(More)