Linda J . Pike

Learn More
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in(More)
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts(More)
The recent Keystone Symposium on Lipid Rafts and Cell Function (March 23-28, 2006 in Steamboat Springs, CO) brought together biophysicists, biochemists, and cell biologists to discuss the structure and function of lipid rafts. What emerged from the meeting was a consensus definition of a membrane raft: "Membrane rafts are small (10-200 nm), heterogeneous,(More)
Lipid rafts are membrane microdomains that are enriched in cholesterol and glycosphingolipids. They have been implicated in processes as diverse as signal transduction, endocytosis and cholesterol trafficking. Recent evidence suggests that this diversity of function is accompanied by a diversity in the composition of lipid rafts. The rafts in cells appear(More)
Lipid rafts are small plasma membrane domains that contain high levels of cholesterol and sphingolipids. Traditional methods for the biochemical isolation of lipid rafts involve the extraction of cells with nonionic detergents followed by the separation of a low-density, detergent-resistant membrane fraction on density gradients. Because of concerns(More)
Lipid rafts are specialized cholesterol-enriched membrane domains that participate in cellular signaling processes. Caveolae are related domains that become invaginated due to the presence of the structural protein, caveolin-1. In this paper, we use electrospray ionization mass spectrometry (ESI/MS) to quantitatively compare the phospholipids present in(More)
The epidermal growth factor (EGF) receptor partitions into lipid rafts made using a detergent-free method, but is extracted from low density fractions by Triton X-100. By screening several detergents, we identified Brij 98 as a detergent in which the EGF receptor is retained in detergent-resistant membrane fractions. To identify the difference in lipid(More)
The Singer-Nicholson model of membranes postulated a uniform lipid bilayer randomly studded with floating proteins. However, it became clear almost immediately that membranes were not uniform and that clusters of lipids in a more ordered state existed within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids are now(More)
Growth factor receptors have been shown to be localized to lipid rafts and caveolae. Consistent with a role for these cholesterol-enriched membrane domains in growth factor receptor function, the binding and kinase activities of growth factor receptors are susceptible to regulation by changes in cholesterol content. Furthermore, knockouts of caveolin-1, the(More)
Caveolae are small, plasma membrane invaginations that have been implicated in cell signaling. In A431 cells, approximately half of the total cellular phosphatidylinositol 4,5-bisphosphate (PtdIns 4, 5-P2) was found to be localized in low density, Triton-insoluble membrane domains enriched in caveolin. Treatment of cells with either epidermal growth factor(More)