Learn More
An image patch can be locally decomposed into sinusoidal waves of different orientations, spatial frequencies, amplitudes, and phases. The local phase information is essential for perception, because important visual features like edges emerge at locations of maximal local phase coherence. Detection of phase coherence requires integration of spatial(More)
Human medial occipital cortex comprises multiple visual areas, each with a distinct retinotopic representation of visual environment. We measured spatial frequency (SF) tuning curves with functional magnetic resonance imaging (fMRI) and found consistent differences between these areas. Areas V1, V2, VP, V3, V4v, and V3A were all band-pass tuned, with(More)
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this(More)
It has been suggested that unconscious visual processing of some stimulus features might occur without the contribution of early visual cortex (V1/V2). In the present study, the causal role of V1/V2 in unconscious processing of simple shapes in intact human brain was studied by applying transcranial magnetic stimulation (TMS) on early visual cortex or(More)
Chromatic information is processed by the visual system both at an unconscious level and at a level that results in conscious perception of color. It remains unclear whether both conscious and unconscious processing of chromatic information depend on activity in the early visual cortex or whether unconscious chromatic processing can also rely on other(More)
Multifocal functional magnetic resonance imaging has recently been introduced as an alternative method for retinotopic mapping, and it enables effective functional localization of multiple regions-of-interest in the visual cortex. In this study we characterized interactions in V1 with spatially and temporally identical stimuli presented alone, or as a part(More)
Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as(More)
People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how(More)
The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for "faciotopy", a particular hypothesis about their intrinsic functional(More)
Cumulative psychophysical evidence suggests that the shape of closed contours is analysed by means of their radial frequency components (RFC). However, neurophysiological evidence for RFC-based representations is still missing. We investigated the representation of radial frequency in the human visual cortex with functional magnetic resonance imaging. We(More)