Learn More
We propose a generalization of the classical stable marriage problem. In our model, the preferences on one side of the partition are given in terms of arbitrary binary relations, which need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable marriage where(More)
We study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We provide the first polynomial time algorithm for computing balanced solutions for these games. In addition, we prove that an instance has a balanced solution if and only if it has a stable one. Our(More)
Let T be a d-dimensional toroidal grid of n d points. For a given range parameter ω, and a positive integer k ≤ d, we say that two points in T are mutually visible if they differ in at most k coordinates and are a distance at most ω apart, where distance is measured using the p norm. We obtain a random d-dimensional line-of-sight graph G by placing a node(More)
  • 1