Learn More
Site-directed spin labeling is a general method for investigating structure and conformational switching in soluble and membrane proteins. It will also be an important tool for exploring protein backbone dynamics. A semi-empirical analysis of nitroxide sidechain dynamics in spin-labeled proteins reveals contributions from fluctuations in backbone dihedral(More)
We present a systematic analysis of the aggregation number and shape of micelles formed by nine detergents commonly used in the study of membrane proteins. Small-angle X-ray scattering measurements are reported for glucosides with 8 and 9 alkyl carbons (OG/NG), maltosides and phosphocholines with 10 and 12 alkyl carbons (DM/DDM and FC-10/FC-12),(More)
Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in(More)
The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis(More)
Two single cysteine substitution mutants at helix surface sites in T4 lysozyme (D72C and V131C) have been modified with a series of nitroxide methanethiosulfonate reagents to investigate the structural and dynamical origins of their electron paramagnetic resonance spectra. The novel reagents include 4-substituted derivatives of either the pyrroline or(More)
Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately(More)
KcsA is a prokaryotic potassium channel. The present study employs cysteine scanning mutagenesis and site-directed spin labeling to investigate the structure of the second transmembrane segment (residues 82-120) in functional tetrameric channels reconstituted in lipid bilayers. Spin-spin interactions are observed between nitroxide side chains at(More)
RATIONALE Dedifferentiation of vascular smooth muscle cells (VSMC) leading to a proliferative cell phenotype significantly contributes to the development of atherosclerosis. Mitogen-activated protein kinase (MAPK) phosphorylation of proteins including connexin 43 (Cx43) has been associated with VSMC proliferation in atherosclerosis. OBJECTIVE To(More)
We describe a simple experimental approach for the rapid determination of protein global folds. This strategy utilizes site-directed spin labeling (SDSL) in combination with isotope enrichment to determine long-range distance restraints between amide protons and the unpaired electron of a nitroxide spin label using the paramagnetic effect on relaxation(More)
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)—a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After(More)