Linda Clijsters

Learn More
DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/C(Cdc20). Cyclin B1 and geminin are(More)
For successful mitosis, Cyclin B1 and Securin must be degraded efficiently before anaphase. Destruction of these mitotic regulators by the 26S proteasome is the result of their poly-ubiquitination by a multi-subunit E3 ligase: the Anaphase-Promoting Complex or Cyclosome (APC/C). Clearly, the APC/C is not just important for mitosis. Destruction of APC/C(More)
Cdc6 and Cdt1 initiate DNA replication licensing when cells exit mitosis. In cycling cells, Cdc6 is efficiently degraded from anaphase onwards as a result of APC/C-Cdh1 activity. When APC/C-Cdh1 is switched off again, at the end of G1 phase, Cdc6 could thus re-accumulate, risking the re-licensing of DNA as long as Cdt1 is present. Here, we carefully(More)
Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-betaTrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A in late anaphase. It has been shown that Aurora A(More)
Sister chromatid separation creates a sudden loss of tension on kinetochores, which could, in principle, re-activate the spindle checkpoint in anaphase. This so-called "anaphase problem" is probably avoided by timely inactivation of cyclin B1-Cdk1, which may prevent the spindle tension sensing Aurora B kinase from destabilizing kinetochore-microtubule(More)
  • 1