Linda C. Weiss

Learn More
Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6-mediated Th2 differentiation.(More)
The c-Jun NH(2)-terminal kinases (JNKs) are a group of mitogen-activated protein (MAP) kinases that participate in signal transduction events mediating specific cellular functions. Activation of JNK is regulated by phosphorylation in response to cellular stress and inflammatory cytokines. Here, we demonstrate that JNK is regulated by a second, novel(More)
The publication of the Daphnia genome has driven research in this ecologically relevant model organism in many directions. However, information on this organism's physiology and the relevant controlling factors is limited. In this regard, especially neuropeptides are important biochemical regulators that control a variety of cellular processes, which in(More)
The extracellular signal-regulated kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase pathways are triggered upon ligation of the antigen-specific T cell receptor (TCR). During the development of T cells in the thymus, the ERK pathway is required for differentiation of CD4(-)CD8(-) into CD4(+)CD8(+) double positive (DP) thymocytes,(More)
The c-Jun NH(2)-terminal kinase (JNK) signaling pathway is induced by cytokines and stress stimuli and is implicated in cell death and differentiation, but the specific function of this pathway depends on the cell type. Here we examined the role of JNK1 and JNK2 in CD8(+) T cells. Unlike CD4(+) T cells, the absence of JNK2 causes increased interleukin(More)
Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the(More)
Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical(More)
The freshwater crustacean Daphnia adapts to changing predation risks by forming inducible defences. These are only formed when they are advantageous, saving associated costs when the defence is superfluous. However, in order to be effective, the time lag between the onset of predation and the defence formation has to be short. Daphnia longicephala develop(More)
Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities.(More)
The micro-crustacean Daphnia pulex is a model species for studying predator-induced defenses. When exposed to chemical cues released by its predator, the phantom midge larvae Chaoborus (Diptera), it develops protective neckteeth that reduce the predator’s success of predation in the juvenile instars. Defensive traits need to be expressed as soon as(More)
  • 1