Linda C. Robinson

Learn More
Abnormal TDP-43 aggregation is a prominent feature in the neuropathology of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Mutations in TARDBP, the gene encoding TDP-43, cause some cases of ALS. The normal function of TDP-43 remains incompletely understood. To better understand TDP-43 biology, we generated mutant mice carrying a(More)
Genes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2, which are coexpressed in large axons and commonly present within the same tetramers. Both contribute to the low-voltage-activated potassium current I Kv1, which powerfully limits excitability and facilitates temporally precise transmission of information, e.g.,(More)
Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express(More)
Proteolytic cleavage of tau at glutamic acid 391 (E391) is linked to the pathogenesis of Alzheimer disease (AD). This C-terminal-truncated tau species exists in neurofibrillary tangles and abnormal neurites in the brains of AD patients and may potentiate tau polymerization. We generated a mouse model that expresses human tau truncated at E391 to begin to(More)
Noise-induced hearing loss (NIHL) is a prevalent health risk. Inbred mouse strains 129S6/SvEvTac (129S6) and MOLF/EiJ (MOLF) show strong NIHL resistance (NR) relative to CBA/CaJ (CBACa). In this study, we developed quantitative trait locus (QTL) maps for NR. We generated F1 animals by intercrossing (129S6 × CBACa) and (MOLF × CBACa). In each intercross, NR(More)
INTRODUCTION Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders,(More)
Genes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2 which are co-expressed in large axons and commonly present within the same tetramers. Both contribute to the lowvoltage-activated potassium current IKv1 which powerfully limits excitability and facilitates temporally precise transmission of information, e.g. in(More)
  • 1