Learn More
Abnormal TDP-43 aggregation is a prominent feature in the neuropathology of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Mutations in TARDBP, the gene encoding TDP-43, cause some cases of ALS. The normal function of TDP-43 remains incompletely understood. To better understand TDP-43 biology, we generated mutant mice carrying a(More)
The opisthotonos (opt) mutation arose spontaneously in a C57BL/Ks-db2J colony and is the only known, naturally occurring allele of opt. This mutant mouse was first identified based on its ataxic and convulsive phenotype. Genetic and molecular data presented here demonstrate that the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) protein, which serves(More)
Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express(More)
Genes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2, which are coexpressed in large axons and commonly present within the same tetramers. Both contribute to the low-voltage-activated potassium current I Kv1, which powerfully limits excitability and facilitates temporally precise transmission of information, e.g.,(More)
Proteolytic cleavage of tau at glutamic acid 391 (E391) is linked to the pathogenesis of Alzheimer disease (AD). This C-terminal-truncated tau species exists in neurofibrillary tangles and abnormal neurites in the brains of AD patients and may potentiate tau polymerization. We generated a mouse model that expresses human tau truncated at E391 to begin to(More)
Genes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2 which are co-expressed in large axons and commonly present within the same tetramers. Both contribute to the low-voltage-activated potassium current I Kv1 which powerfully limits excitability and facilitates temporally precise transmission of information, e.g. in(More)
Alzheimer's Disease (AD) is a complex genetic disorder with four loci already identified. Mutations in three of these, the amyloid precursor protein, presenilin I, and presenilin II, cause early-onset AD. The apolipoprotein E (APOE) gene contributes primarily to late-onset AD. The APOE-4 allele acts in a dose-related fashion to increase risk and decrease(More)
The GABAA receptor is a ligand-gated chloride channel belonging to the superfamily of ligand-gated ion channels of which the nicotinic acetylcholine (nACh) receptor is prototypic. In the central nervous system the GABAA receptor mediates fast neuronal inhibition. To facilitate the study of this receptor, a GABAA receptor-green fluorescent protein(More)
INTRODUCTION Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders,(More)
  • 1