Learn More
Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute(More)
KEY POINTS Optogenetically released acetylcholine (ACh) from medial septal afferents activates muscarinic receptors on both vasoactive intestinal peptide-expressing (VIP) and parvalbumin-expressing (PV) basket cells (BCs) in mouse hippocampal CA1. ACh release depolarized VIP BCs whereas PV BCs depolarized, hyperpolarized or produced biphasic responses.(More)
OBJECTIVES The aim of this study was to discern the pathophysio-logical bases for neuropathic hyperalgesias. METHODS In this study, neurological and neurophysiological evaluation of 132 consecutive hyperalgesia patients using rigorous clinical and laboratory protocols were carried out. RESULTS Two discrete semeiologic entities emerged: classic(More)
Acetylcholine (ACh) release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the(More)
  • 1