Lincoln Ross Potter

Learn More
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and(More)
Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy. BNP acts locally to reduce(More)
Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular(More)
C-type natriuretic peptide (CNP) is a newly discovered factor that stimulates vasorelaxation and inhibits cell proliferation. Natriuretic peptide receptor-B (NPR-B) is the primary signaling molecule for CNP. Recently, the guanylyl cyclase activity of NPR-B was shown to correlate with its phosphorylation state, and it was suggested that receptor(More)
Natriuretic peptide receptor A (NPR-A) is the biological receptor for atrial natriuretic peptide (ANP). Activation of the NPR-A guanylyl cyclase requires ANP binding to the extracellular domain and ATP binding to a putative site within its cytoplasmic region. The allosteric interaction of ATP with the intracellular kinase homology domain (KHD) is(More)
Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP)(More)
Atrial natriuretic peptide (ANP) binds to the guanylyl cyclase-A (GC-A) receptor found in tissues such as the kidney and adrenal gland, resulting in marked elevations of the intracellular signaling molecule, cGMP. Here, GC-A is shown to exist as a phosphoprotein when expressed in human embryonic 293 cells. The 32P is principally associated with(More)
A DNA segment that is highly conserved in glucokinase (hexokinase IV) and hexokinase I cDNA was used to identify specific cDNAs in a library prepared from rat adipose tissue mRNA. Some of these cDNAs were identified as being hexokinase I cDNA. Others, although similar to both the glucokinase and hexokinase I cDNAs, were unique. Two of these unique cDNAs(More)
Stimulation of guanylyl cyclase A (GC-A) by atrial natriuretic peptide (ANP) is antagonized by activators of protein kinase C (PKC). Thus, it has been suggested that PKC phosphorylates and desensitizes GC-A. Here, we have developed stable GC-A transfectants of NIH3T3 cells, which display marked reductions in hormone-dependent cGMP elevations and guanylyl(More)