Learn More
The PGC-1 family of coactivators stimulates the activity of certain transcription factors and nuclear receptors. Transcription factors in the sterol responsive element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. We show here that high-fat feeding, which induces hyperlipidemia and atherogenesis, stimulates the(More)
The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone(More)
Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that regulate development, reproduction, and metabolism of lipids, drugs and energy. The importance of this family of proteins in metabolic disease is exemplified by NR ligands used in the clinic or under exploratory development for the treatment of diabetes mellitus,(More)
Oxidized lipids and inflammatory cytokines are believed to play a causal role in atherosclerosis through the regulation of gene expression in macrophages and other cells. Previous work has implicated the nuclear receptors peroxisome proliferator-activated receptor and liver X receptor in the control of lipid-dependent gene expression and inflammation. Here(More)
The nuclear receptors LXRalpha and LXRbeta have been implicated in the control of cholesterol and fatty acid metabolism in multiple cell types. Activation of these receptors stimulates cholesterol efflux in macrophages, promotes bile acid synthesis in liver, and inhibits intestinal cholesterol absorption, actions that would collectively be expected to(More)
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator(More)
Osteoporosis, characterized by low bone mass and structural deterioration of bone tissue with an increased susceptibility to fractures, is a major public health threat to the elderly. Bone mass homeostasis in adults is maintained locally by the balance between osteoblastic bone formation and osteoclastic bone resorption. Haploinsufficiency of PPARgamma, a(More)
OBJECTIVE Nur77 is an orphan nuclear receptor with pleotropic functions. Previous studies have identified Nur77 as a transcriptional regulator of glucose utilization genes in skeletal muscle and gluconeogenesis in liver. However, the net functional impact of these pathways is unknown. To examine the consequence of Nur77 signaling for glucose metabolism in(More)
Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is(More)
Members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression in inflammation and disease. Previous studies have shown that the lipid-activated receptors peroxisomal proliferator-activated receptor and liver X receptor inhibit nuclear factor-kappaB (NF-kappaB) signaling and inflammatory gene(More)