Limin Tong

Learn More
By exploiting the broad region of anomalous group-velocity dispersion (GVD) and the large effective nonlinearity of photonic nanowires, we demonstrate soliton-effect self-compression of 70-fs pulses down to 6.8 fs. Under suitable conditions, simulations predict that self-compression down to single-cycle duration is possible. Route to phase control of(More)
We propose a platform to achieve ultra-high Quality factor (Q) optical resonators based on semiconductor nanowires. By defining one-dimensional photonic crystal at nanowire ends and engineering the micro-cavity pattern, cavities with Q of 3×10 5 and mode volume smaller than 0.2(λ/n) 3 have been designed. This represents an increase of almost three orders of(More)
We report the fabrication and characterization of freestanding graphene coated ZnO nanowires (GZNs) for optical waveguiding. The GZNs are fabricated using a tape-assist transfer under micromanipulation. Owing to the deep-subwavelength diameter and high index contrast of the ZnO nanowire waveguide, light-graphene interaction is significantly enhanced by the(More)
Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field(More)
We demonstrate that optical solitons can exist in dispersion-inverted highly-nonlinear AlGaAs nanowires. This is accomplished by strongly reversing the dispersion of these nano-structures to anomalous over a broad frequency range. These self-localized waves are possible at very low power levels and can form in millimeter long nanowire structures. The(More)
We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical(More)
  • 1