Learn More
Silica waveguides with diameters larger than the wavelength of transmitted light are widely used in optical communications, sensors and other applications. Minimizing the width of the waveguides is desirable for photonic device applications, but the fabrication of low-loss optical waveguides with subwavelength diameters remains challenging because of strict(More)
Single-mode optical wave guiding properties of silica and silicon subwavelength-diameter wires are studied with exact solutions of Maxwell's equations. Single mode conditions, modal fields, power distribution, group velocities and waveguide dispersions are studied. It shows that air-clad subwavelength-diameter wires have interesting properties such as(More)
We fabricate fiber Bragg grating (FBG) in microfibers (MFs) using focused ion beam milling technique. By periodically etching 100 nm-depth grooves on the surface of silica MFs with diameters less than 2 μm, evident grating features with transmission dip up to 15 dB are obtained. Because of the high-index contrast of the gratings structure, the length of the(More)
We report on the assembly of low-loss silica nanowires into functional microphotonics devices on a low-index nondissipative silica aerogel substrate. Using this all-silica technique, we fabricated linear waveguides, waveguide bends, and branch couplers. The devices are significantly smaller than existing comparable devices and have low optical loss,(More)
We demonstrate refractive-index sensors based on copper-rod- supported microfiber loops. Due to the robustness of the supported loop structure and the flexibility of obtaining critical coupling within a broad spectral range, these microfiber loops show high sensitivity and high stability for sensing in both low- and high-concentration solutions with(More)
We demonstrate Mach-Zehnder interferometers (MZI) assembled using optical microfibers or nanofibers (MNFs) drawn from silica fibers and tellurite glasses. As-assembled MZIs, with dimensions of tens to hundreds of micrometers, show good interference fringes with extinction ratios of approximately 10 dB. The path-length difference of the MZI can be tuned by(More)
High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate(More)
We report a general approach to light-emitting polymer nanofibers (PNFs) based on waveguiding excitation. By waveguiding excitation light along the PNFs, we demonstrated that the interaction of light with PNFs is enhanced over 3 orders of magnitude compared with the currently used irradiating excitation. Intriguing advantages such as enhanced excitation(More)
We report a novel micro-fiber Bragg grating (µFBG) sensor that takes advantage of the degeneracy of stop-band and rapid emergence of spectral modes when an effective phase shift occurs. The phase shift can be enabled by a range of perturbations in a central segment of the grating, including monolayer immobilization of bio-molecules or change in refractive(More)