Lilyana Mihalkova

Learn More
We introduce a novel active learning algorithm for classification of network data. In this setting, training instances are connected by a set of links to form a network, the labels of linked nodes are correlated, and the goal is to exploit these dependencies and accurately label the nodes. This problem arises in many domains, including social and biological(More)
Transfer learning addresses the problem of how to leverage knowledge acquired in a source domain to improve the accuracy and speed of learning in a related target domain. This paper considers transfer learning with Markov logic networks (MLNs), a powerful formalism for learning in relational domains. We present a complete MLN transfer system that first(More)
Statistical Relational Learning (SRL) is a subarea of machine learning which combines elements from statistical and probabilistic modeling with languages which support structured data representations. In this survey, we will: 1) provide an introduction to SRL, 2) describe some of the distinguishing characteristics of SRL systems, including relational(More)
Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of(More)
Web searches tend to be short and ambiguous. It is therefore not surprising that Web query disambiguation is an actively researched topic. To provide a personalized experience for a user, most existing work relies on search engine log data in which the search activities of that particular user, as well as other users, are recorded over long periods of time.(More)
A central goal of transfer learning is to enable learning when training data from the domain of interest is limited. Yet, work on transfer across relational domains has so far focused on the case where there is a significant amount of target data. This paper bridges this gap by studying transfer when the amount of target data is minimal and consists of(More)
One of the potential advantages of multiple classifier systems is an increased robustness to noise and other imperfections in data. Previous experiments on classification noise have shown that bagging is fairly robust but that boosting is quite sensitive. Decorate is a recently introduced ensemble method that constructs diverse committees using artificial(More)