Learn More
Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing(More)
Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are(More)
CFTRDeltaF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRDeltaF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate(More)
Intracellular tau deposits are characteristic of several neurodegenerative disorders called tauopathies. The tau protein regulates the stability and assembly of microtubules by binding to microtubules through three or four microtubule-binding repeats (3R and 4R). The number of microtubule-binding repeats is determined by the inclusion or exclusion of the(More)
Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum (ER) to select misfolded proteins for degradation. Herein we describe methods that allow for the study of the pathway for proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). The experimental system described employs(More)
FTR F508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTR F508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTR F508.(More)
  • 1