Lilian Madi-Ravazzi

Learn More
Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the(More)
Zaprionus indianus is a drosophilid native to the Afrotropical region that has colonized South America and exhibits a wide geographical distribution. In contrast, Z. sepsoides is restricted to certain African regions. The two species differ in the size of their testes, which are larger in Z. indianus than in Z. sepsoides. To better understand the biology(More)
The Zaprionus genus group comprises three drosophilid genera (Zaprionus, Phorticella and Samoaia) that are thought to be related to the Drosophila immigrans species group. We revised the phylogenetic relationships among the three genera and their placement within the subfamily Drosophilinae using one mitochondrial (COII) and one nuclear (Amyrel) gene. The(More)
Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different(More)
The process of speciation occurs through the evolution of any of several forms of reproductive isolation between taxa, including inviability of hybrids. In this work, strains derived from allopatric populations of Drosophila buzzatii cluster species were experimentally crossed in order to evaluate their reproductive and cytogenetic relationships, and to(More)
Metric (e.g., body size) and meristic (e.g., bristle number) traits are of general use in quantitative genetic studies, and the phenotypic variance is subdivided into a genetic and a non-genetic environmental component. The non-genetic variance may have two origins: a common garden effect between individuals and a developmental instability within the same(More)
The Drosophila saltans group consists of five subgroups and 21 species, most of which have been identified only by morphological aspects of the male terminalia revealed by drawings using a camera lucida and a bright-field microscope. However, several species in the group, mainly those included in the saltans subgroup, are difficult to differentiate using(More)
Fertility (percentage of fertile crosses) and the degree of synapsis in salivary gland chromosomes in isofemale lines of Drosophila buzzatii, D. serido, D. koepferae and D. seriema were analysed. D. buzzatii was completely sterile in intercrosses with strains from the other species except for D. koepferae. The other species intercrossed to a greater or(More)
Habitat fragmentation is the main cause of biodiversity loss, as remnant fragments are exposed to negative influences that include edge effects, prevention of migration, declines in effective population sizes, loss of genetic variability and invasion of exotic species. The Drosophilidae (Diptera), especially species of the genus Drosophila, which are highly(More)
In the Drosophila repleta group the establishment of subgroups and complexes made on the basis of morphological and cytological evidences is supported by tests of reproductive isolation. Among species in the repleta group, the buzzatii cluster, due to its polymorphism and polytipism, is an excellent material for ecological and speciation studies. Some(More)