Lilian M Schweizer

Learn More
In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetases (PRS) genetically and biochemically. Each of the four genes, all(More)
The model eukaryote Saccharomyces cerevisiae is well suited to investigate the causes of metabolic disturbance. PRPP [5-phospho-D-ribosyl-1(alpha)-pyrophosphate] may be regarded as a junction of carbon and nitrogen metabolism. As a result of this central position, perturbations in its synthesis can give rise to many unexpected cellular events, such as(More)
Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding(More)
In Saccharomyces cerevisiae, PRS genes comprise a family of five paralogous genes. Previously, it has been shown that in the cell the gene products are organized into two interacting complexes, one of which is a heterodimer and the other a heterotrimer. Here, it has been demonstrated that in addition to supplying the cell with the key metabolic intermediate(More)
The biosynthetic intermediate PRPP (phosphoribosylpyrophosphate) has a central role in cellular biochemistry since it links carbon and nitrogen metabolism. Its importance may be reflected in the fact that, in the Saccharomyces cerevisiae (yeast) genome, there are five unlinked genes, PRS1-PRS5, each of which is theoretically capable of encoding the enzyme(More)
Phosphoribosyl-pyrophosphate synthetase (Prs) catalyses the synthesis of phosphoribosyl pyrophosphate (PRPP), an intermediate in nucleotide metabolism and the biosynthesis of the amino acids histidine and tryptophan. The Saccharomyces cerevisiae genome contains a family of five PRS genes, PRS1-PRS5. Using anti-peptide antisera directed against two different(More)
Two of the five unlinked genes theoretically capable of encoding 5-phosphoribosyl-1(α)-pyrophosphate (PRPP) synthetase (Prs) in Saccharomyces cerevisiae, PRS1 and PRS5, contain in-frame insertions which separate the cation- and PRPP-binding sites, diagnostic of Prs polypeptides. The impairment of cell wall integrity (CWI) mitogen-activated protein kinase(More)
The gene products of the five-membered PRS gene family in Saccharomyces cerevisiae have been shown to exist as three minimal functional entities, Prs1/Prs3, Prs2/Prs5, and Prs4/Prs5, each capable of supporting cell viability. The Prs1/Prs3 heterodimer can be regarded as the most important because its loss causes temperature sensitivity. It has been shown(More)
The evolutionary conservation of mismatch repair and Saccharomyces cerevisiae as a model system have been exploited for monitoring the influence of everyday beverages and the antineoplastic agent, hydroxyurea, on the stability of regions of highly repetitive DNA known as microsatellites. Two different reporter systems are compared for sensitivity and(More)
  • 1