Learn More
MicroRNAs (miRNAs) are endogenous short (approximately 22) nucleotide RNAs that regulate gene function by modification of target mRNAs. miRNA-1 (miR-1) and miRNA-206 (miR-206) are highly expressed in skeletal muscle. Due to the tissue-specific nature of miR-1/206 for skeletal muscles, we investigated the role of miR-1/206 in the development of(More)
The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32,774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and(More)
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple(More)
PURPOSE MicroRNAs (miRNAs) can contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. The authors' previous studies on miR-34a showed that miRNA can influence the growth of uveal melanoma cells. In this study, they investigated the role of miR-137 in the pathogenesis of uveal melanoma. METHODS Real-time RT-PCR was used to(More)
Cotton fibers, important natural raw materials for the textile industry, are trichomes elongated from epidermal cells of cotton ovules. To date, a number of genes have been shown to be critical for fiber development. In this study, the roles of genes encoding fasciclin-like arabinoglactan proteins (FLAs) in cotton fiber were examined by transforming RNA(More)
For the first time, a sea-island cotton (Gossypium barbadense L.) thaumatin-like protein gene (GbTLP1) with a potential role in secondary cell wall development has been overexpressed in tobacco to elucidate its function. The presence of the transgene was verified by Southern blotting and higher expression levels of GbTLP1 in transgenic tobacco plants were(More)
Fiber elongation is the key determinant of fiber quality and output in cotton (Gossypium hirsutum). Although expression profiling and functional genomics provide some data, the mechanism of fiber development is still not well understood. Here, a gene encoding a calcium sensor, GhCaM7, was isolated based on its high expression level relative to other GhCaMs(More)
Cotton fiber is a single cell that differentiates from the ovule epidermis and undergoes synchronous elongation with high secretion and growth rate. Apart from economic importance, cotton fiber provides an excellent single-celled model for studying mechanisms of cell-growth. Annexins are Ca2+- and phospholipid-binding proteins that have been reported to be(More)
The molecular mechanisms underlying cell wall biosynthesis are poorly understood. In this study, microscopic analysis showed that protoplasts generated a new cell wall within 48 h after transfer to a wall-regeneration medium. To identify genes related to cell wall biosynthesis in cotton, suppression subtractive hybridization was used to visualize(More)
Cotton fiber (Gossypium hirsutum L. and G. barbadense L.) is a good model for studies of plant cell elongation and cell wall biogenesis. Aquaporins are ancient membrane channel proteins that facilitate the permeation of water across biological membranes. We studied GhPIP1-2, encoding plasma membrane intrinsic protein, and GhgammaTIP1, encoding tonoplast(More)