Lili C. Kudo

Learn More
Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that(More)
The mechanisms controlling axon guidance are of fundamental importance in understanding brain development. Growing corticospinal and somatosensory axons cross the midline in the medulla to reach their targets and thus form the basis of contralateral motor control and sensory input. The motor and sensory projections appeared uncrossed in patients with(More)
Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in(More)
Advances in genomics and proteomics permit rapid identification of disease-relevant genes and proteins. Challenges include biological differences between animal models and human diseases, high discordance between DNA and protein expression data and a lack of experimental models to study human complex diseases. To overcome some of these limitations, we(More)
Sanfilippo syndrome type B (mucopolysaccharidosis III B, MPS III B) is an autosomal recessive, neurodegenerative disease of children, characterized by profound mental retardation and dementia. The primary cause is mutation in the NAGLU gene, resulting in deficiency of alpha-N-acetylglucosaminidase and lysosomal accumulation of heparan sulfate. In the mouse(More)
The genetic programs underlying neural stem cell (NSC) proliferation and pluripotentiality have only been partially elucidated. We compared the gene expression profile of proliferating neural stem cell cultures (NS) with cultures differentiated for 24 h (DC) to identify functionally coordinated alterations in gene expression associated with neural(More)
Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and(More)
Hoxd10 is expressed in the posterior spinal cord and hindlimbs of the mouse. Hoxd10, along with other Hox transcription factors, is thought to regulate the activity of genes involved in nervous system patterning and motor neuron development, but little is known about the downstream targets regulated by this gene. cDNA microarrays were used to investigate(More)
Accumulation of neurotoxic hyperphosphorylated TAU protein is a major pathological hallmark of Alzheimer disease and other neurodegenerative dementias collectively called tauopathies. Puromycin-sensitive aminopeptidase (PSA/NPEPPS) is a novel modifier of TAU-induced neurodegeneration with neuroprotective effects via direct proteolysis of TAU protein. Here,(More)
Accumulation of misfolded neurotoxic Cu, Zn-superoxide dismutase-1 (SOD1) protein found in both familial and sporadic amyotrophic lateral sclerosis (ALS) is recognized as an important contributing factor of neuronal cell death. However, little is known about the mechanisms controlling the accumulation and turnover of SOD1 protein. Puromycin-sensitive(More)