Lilach Hadany

Learn More
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in(More)
Facultatively sexual organisms often engage in sex more often when in poor condition. We show that such condition-dependent sex carries evolutionary advantages and can explain the evolution of sexual reproduction even when sex entails high costs. Specifically, we show that alleles promoting individuals of low fitness to have sex more often than individuals(More)
BACKGROUND Antibiotic resistance in bacterial infections is a growing threat to public health. Recent evidence shows that when exposed to stressful conditions, some bacteria perform higher rates of horizontal gene transfer and mutation, and thus acquire antibiotic resistance more rapidly. METHODS We incorporate this new notion into a mathematical model(More)
Recent modeling has shown that condition-dependent sex can evolve much more readily than sex that occurs at a uniform rate, even in the face of substantial costs of sex. Specifically, evolution favors genes that cause organisms to allocate more resources to sexual reproduction when they are in poor condition and to asexual reproduction--including increased(More)
Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability-the ability to adapt-and adaptedness-the ability to remain adapted. We model an asexual population(More)
BACKGROUND Homing endonucleases (HEases) are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic(More)
Dispersal is a major factor in ecological and evolutionary dynamics. Although empirical evidence shows that the tendency to disperse varies among individuals in many organisms, the evolution of dispersal patterns is not fully understood. Previous theoretical studies have shown that condition-dependent dispersal may evolve as a means to move to a different(More)
BACKGROUND Among the long-standing conundrums of evolutionary theory, obligatory sex is one of the hardest. Current theory suggests multiple factors that might explain the benefits of sex when compared with complete asexuality, but no satisfactory explanation for the prevalence of obligatory sex in the face of facultative sexual reproduction. RESULTS AND(More)
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals' foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information(More)