Learn More
Mutations in the zebrafish knypek locus impair gastrulation movements of convergent extension that narrow embryonic body and elongate it from head to tail. We demonstrate that knypek regulates cellular movements but not cell fate specification. Convergent extension movement defects in knypek are associated with abnormal cell polarity, as mutant cells fail(More)
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation(More)
Systematic genome-wide mutagenesis screens for embryonic phenotypes have been instrumental in the understanding of invertebrate and plant development. Here, we report the results from the first application of such a large-scale genetic screening to vertebrate development. Male zebrafish were mutagenized with N-ethyl N-nitrosourea to induce mutations in(More)
In a large scale mutagenesis screen for embryonic mutants in zebrafish, we have identified 63 mutations in 24 loci affecting the morphogenesis of the zebrafish brain. The expression of marker genes and the integrity of the axonal scaffold have been studied to investigate abnormalities in regionalization, neurogenesis and axonogenesis in the brain. Mutants(More)
One of the major challenges of developmental biology is understanding the inductive and morphogenetic processes that shape the vertebrate embryo. In a large-scale genetic screen for zygotic effect, embryonic lethal mutations in zebrafish we have identified 25 mutations that affect specification of cell fates and/or cellular rearrangements during(More)
development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Abstract The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and(More)
Vertebrate eye development in the anterior region of the neural plate involves a series of inductive interactions dependent on the underlying prechordal plate and signals from the midline of the neural plate, including Hedgehog. The mechanisms controlling the spatiotemporal expression pattern of hedgehog genes are currently not understood. Cyclopia is(More)
As part of a large-scale mutagenesis screen of the zebrafish genome, we have identified 58 mutations that affect the formation and function of the cardiovascular system. The cardiovascular system is particularly amenable for screening in the transparent zebrafish embryo because the heart and blood vessels are prominent and their function easily examined. We(More)
Convergence and extension are gastrulation movements that participate in the establishment of the vertebrate body plan. Using new methods for quantifying convergence and extension movements of cell groups, we demonstrate that in wild-type embryos, dorsal convergence of lateral cells is initially slow, but speeds up between the end of the gastrula period and(More)
The notochord is critical for the normal development of vertebrate embryos. It serves both as the major skeletal element of the embryo and as a signaling source for the establishment of pattern within the neurectoderm, the paraxial mesoderm and other tissues. In a large-scale systematic screen of mutations affecting embryogenesis in zebrafish we identified(More)