Lijun Liu

Learn More
This letter presents a unified convergence analysis of the split-complex nonlinear gradient descent (SCNGD) learning algorithms for complex-valued recurrent neural networks, covering three classes of SCNGD algorithms: standard SCNGD, normalized SCNGD, and adaptive normalized SCNGD. We prove that if the activation functions are of split-complex type and some(More)
One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms(More)