Learn More
Leptin acts on the brain to regulate body weight and neuroendocrine function. Proopiomelanocortin (POMC) neurons in the hypothalamus are important targets of leptin. These cells express the leptin receptor ObRb, and leptin can regulate POMC mRNA levels, but the cellular mechanisms by which this occurs is unknown. Here we show evidence that leptin stimulates(More)
Proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus are activated by leptin and mediate part of leptin's central actions to influence energy balance. However, little is known about potential leptin signaling in POMC neurons located in the nucleus of the solitary tract (NTS), the only other known population of POMC neurons.(More)
Leptin plays a pivotal role in regulation of energy balance. Via unknown central pathways, leptin also affects peripheral glucose homeostasis and locomotor activity. We hypothesized that, specifically, pro-opiomelanocortin (POMC) neurons mediate those actions. To examine this possibility, we applied Cre-Lox technology to express leptin receptors (ObRb)(More)
Diet-induced obesity (DIO) in rodents is characterized by impaired activation of signal-transducer and activator of transcription 3 (STAT3) by leptin receptors (LepRb) within the hypothalamic arcuate nucleus. This signaling defect likely plays an important role in development of DIO. However, the neuro-chemical identity of the leptin-STAT3 resistant arcuate(More)
During starvation in rodents, the hypothalamic-pituitary-thyroid axis is down-regulated, resulting in low circulating thyroid hormone levels. This involves a reduction in hypothalamic TRH mRNA that is caused in part by a fall in serum leptin levels, which is sensed by neurons within the hypothalamus. The mechanism by which this regulation occurs is not(More)
The central targets mediating the anorectic and other actions of leptin have yet to be fully identified. Although previous studies focused on the hypothalamus, leptin also acts on neurons in extrahypothalamic sites, including the nucleus of the solitary tract (NTS). Moreover, injection of leptin into the NTS of rats suppresses food intake. Within the(More)
Leptin reduces food intake by an unspecified mechanism. Studies show that forebrain ventricular leptin delivery increases the inhibitory effects of gastrointestinal (GI) stimulation on intake and amplifies the electrophysiological response to gastric distension in neurons of the medial subnucleus of the nucleus tractus solitarius (mNTS). However, forebrain(More)
Regulation of energy balance by leptin involves regulation of several neuropeptides, including thyrotropin-releasing hormone (TRH). Synthesized from a larger inactive precursor, its maturation requires proteolytic cleavage by prohormone convertases 1 and 2 (PC1 and PC2). Since this maturation in response to leptin requires prohormone processing, we(More)
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of(More)
  • 1