Learn More
Thousands of novel transcripts have been identified using deep transcriptome sequencing. This discovery of large and 'hidden' transcriptome rejuvenates the demand for methods that can rapidly distinguish between coding and noncoding RNA. Here, we present a novel alignment-free method, Coding Potential Assessment Tool (CPAT), which rapidly recognizes coding(More)
MOTIVATION RNA-seq has been extensively used for transcriptome study. Quality control (QC) is critical to ensure that RNA-seq data are of high quality and suitable for subsequent analyses. However, QC is a time-consuming and complex task, due to the massive size and versatile nature of RNA-seq data. Therefore, a convenient and comprehensive QC tool to(More)
The proneural, basic helix-loop-helix transcription factor Atoh1 governs the development of numerous key neuronal subtypes, such as cerebellar granule and brainstem neurons, inner ear hair cells, and several neurons of the proprioceptive system, as well as diverse nonneuronal cell types, such as Merkel cells and intestinal secretory lineages. However, the(More)
Low-density-lipoprotein (LDL) receptor-related proteins 5 and 6 (LRP5/6) are Wnt co-receptors essential for Wnt/β-catenin signaling. Dickkopf 1 (DKK1) inhibits Wnt signaling by interacting with the extracellular domains of LRP5/6 and is a drug target for multiple diseases. Here we present the crystal structures of a human LRP6-E3E4-DKK1 complex and the(More)
RNA-seq was used to generate an extensive map of the Drosophila melanogaster transcriptome by broad sampling of 10 developmental stages. In total, 142.2 million uniquely mapped 64-100-bp paired-end reads were generated on the Illumina GA II yielding 356× sequencing coverage. More than 95% of FlyBase genes and 90% of splicing junctions were observed.(More)
Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human(More)
A long-sought goal in structural biology has been the imaging of membrane proteins in their membrane environments. This goal has been achieved with electron crystallography in those special cases where a protein forms highly ordered arrays in lipid bilayers. It has also been achieved by NMR methods in proteins up to 50 kilodaltons (kDa) in size, although(More)
The Polycomb protein enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in advanced human prostate cancer (PCa), especially in lethal castration-resistant prostate cancer (CRPC). However, the signaling pathways that regulate EZH2 functions in PCa remain incompletely defined. Using EZH2 antibody-based RNA immunoprecipitation-coupled high(More)
In this letter, a geometry-based feature-selection method is proposed for efficient analysis of hyperspectral imagery. It searches the vertices that form the largest simplex iteratively in pixel space. These vertices are representative subsets of spectral bands. A distance measure is introduced in the simplex volume comparison for fast implementation of the(More)
CD147, also named extracelluar matrix metalloproteinase inducer (EMMPRIN), has been proved to be involved in the invasion and metastasis processes of tumor cells in many types of cancers. To determine the role of CD147 in the invasiveness properties of prostate cancer, we successfully downregulated CD147 by RNA interference (RNAi) technology, in PC-3 cell(More)