Lifang Jiao

  • Citations Per Year
Learn More
Size-controlled Ag0.04@Co0.48@Ni0.48 core-shell nanoparticles (NPs) were synthesized by employing graphene (rGO) with different reduction degrees as supports. The number of C=O and C=O functional groups on the surface of rGO might play a major role in controlling the particle size. The strong steric-hindrance effect of C=O resulted in the growth of large(More)
The Bi(2)S(3) nanomaterials with various morphologies such as nanorods, nanowires, nanowire bundles, urchin-like microspheres and urchin-like microspheres with cavities have been successfully synthesized through a simple hydrothermal method. Experimental results indicate that sulfur sources play crucial roles in determining the morphologies of Bi(2)S(3)(More)
Ultrasmall Sn nanodots (1-2 nm) are homogeneously encapsulated in porous N-doped carbon nanofibers using a simple and scalable electrospinning method. The composite nanofibers weave into flexible free-standing membrane and can be directly used as binder- and current collector-free anode for Na-ion batteries, exhibiting excellent electrochemical performance(More)
We report the synthesis and anode application for sodium-ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as-prepared WS2 NWs were evaluated as anode materials of SIBs in two potential(More)
LiCoO(2) material is recovered from spent lithium-ion batteries and investigated as anode materials for Ni/Co power batteries for the first time. LiCoO(2) electrodes with a small amount of S-doping display excellent electrochemical properties. The electrochemical reactions occurring on M0 electrodes during the first several cycles and after being activated(More)
MnFe2O4 nanodots (∼3.3 nm) homogeneously dispersed in porous nitrogen-doped carbon nanofibers (denoted as MFO@C) were prepared by a feasible electrospinning technique. Meanwhile, MFO@C with the character of flexible free-standing membrane was directly used as binder- and current collector-free anode for sodium-ion batteries, exhibiting high electrochemical(More)
To inhibit the aggregation of TiO2 nanoparticles and to improve the electrochemical kinetics of TiO2 electrode, a hybrid material of ultrasmall TiO2 nanoparticles in situ grown on rGO nanosheets was obtained by ultraphonic and reflux methods. The size of the TiO2 particles was controlled about 10 nm, and these particles were evenly distributed across the(More)
Cu-doped Li4 Ti5 O12 -TiO2 nanosheets were synthesized by a facile, cheap, and environmentally friendly solution-based method. These nanostructures were investigated as an anode material for lithium-ion batteries. Cu doping was found to enhance the electron conductivity of the materials, and the amount of Cu doped controlled the crystal structure and(More)
Flower-like α-Ni(OH)2 microspheres composed of nanowires are prepared by a solvothermal method using triethylene glycol and water as the mixed solvent. The formation of this unique structure is attributed to the synergetic effect of dissolution-recrystallization procedure, Ostwald ripening, and aggregative lateral attachment. Experimental results indicate(More)
Triple-layered Ag@Co@Ni core-shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04 @Co0.48 @Ni0.48 showed the most distinct core-shell structure. Compared with its(More)