Liewen Jiang

Learn More
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is(More)
Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of(More)
It is very challenging to estimate the comparative treatment effect between a treatment therapy and a control therapy on overall survival in the presence of treatment crossover, switch to an alternative non-study therapy, and non-random patient dropout. Existing methods (e.g., intent-to-treat and per-protocol) are known to be biased. We proposed two new(More)
  • 1