Liesbeth Rijnen

Learn More
The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be involved in the complex process of cheese flavor development. In lactococci, transamination is the first step in the degradation of aromatic and branched-chain amino acids which are precursors of aroma compounds. Here, the major aromatic amino acid(More)
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction(More)
The first step of amino acid degradation in lactococci is a transamination, which requires an alpha-keto acid as the amino group acceptor. We have previously shown that the level of available alpha-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding(More)
In lactococci, transamination is the first step of the enzymatic conversion of aromatic and branched-chain amino acids to aroma compounds. In previous work we purified and biochemically characterized the major aromatic aminotransferase (AraT) of a Lactococcus lactis subsp. cremoris strain. Here we characterized the corresponding gene and evaluated the role(More)
For product development reasons two types (A and B) of rubber rings, used on clasps of swing top beer bottles, were investigated for the presence of volatile compounds, which could affect the taste/odour of the packed beer due to (vapour phase) migration. Samples were incubated under different conditions and, after dynamic headspace sampling, analysed by(More)
  • 1