Learn More
The tomographic localization of activity within human primary visual cortex (striate cortex or V1) was examined using whole-head magnetoencephalography (MEG) and 4-T functional magnetic resonance imaging (fMRI) in four subjects. Circular checkerboard pattern stimuli with radii from 1.8 to 5.2 degrees were presented at eccentricity of 8 degrees and angular(More)
Magnetic field tomography (MFT) was used to extract estimates for distributed source activity from average and single trial MEG signals recorded while subjects identified objects (including faces) and facial expressions of emotion. Regions of interest (ROIs) were automatically identified from the MFT solutions of the average signal for each subject. For one(More)
In an earlier experiment, we have used the BTi twin MAGNES system (2 x 37 channels) to record the evoked magnetic field from five healthy right-handed male volunteers using two tasks: visual recognition of complex objects including faces and facial expressions of emotion. We have repeated the experiment with one of the five subjects using the BTi whole head(More)
MEG correlates of the recognition of facial expressions of emotion were studied in four healthy volunteers. Subjects performed a facial emotion recognition task and a control task involving recognition of complex objects including faces. Facial emotion recognition activated inferior frontal cortex, amygdala and different parts of temporal cortex in a(More)
With sufficiently fast data sampling, ubiquitous sharp transients appear in magnetoencephalography (MEG) data. Initially, no known collective neuronal activity could explain MEG signal generation well above 100 Hz, so it was assumed that these transients were entirely composed of background electronic noise that could be eliminated by filtering and(More)
Cortical activity evoked by repeated identical sensory stimulation is extremely variable. The source of this variability is often assigned to "random ongoing background activity" which is considered to be irrelevant to the processing of the stimuli and can therefore be eliminated by ensemble averaging. In this work, we studied the single-trial variability(More)
It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well(More)
Parallel-distributed processing is ubiquitous in the brain but often ignored by experimental designs and methods of analysis, which presuppose sequential and stereotypical brain activations. We introduce here a methodology that can effectively deal with sequential and distributed activity. Regional brain activations elicited by electrical median nerve(More)
Auditory evoked magnetic fields were recorded from 5 human subjects, simultaneously over each hemisphere, using the BTi twin MAGNES system (2 x 37 channel). Accurate placing of each probe and the use of optimally designed linear sums of signals allow the estimation of the millisecond by millisecond history of activation of the complex of generators(More)