Learn More
With sufficiently fast data sampling, ubiquitous sharp transients appear in magnetoencephalography (MEG) data. Initially, no known collective neuronal activity could explain MEG signal generation well above 100 Hz, so it was assumed that these transients were entirely composed of background electronic noise that could be eliminated by filtering and(More)
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we(More)
Most neuroimaging studies on face processing used centrally presented images with a relatively large visual field. Images presented in this way activate widespread striate and extrastriate areas and make it difficult to study spatiotemporal dynamics and connectivity pattern differences from various parts of the visual field. Here we studied(More)
Parallel-distributed processing is ubiquitous in the brain but often ignored by experimental designs and methods of analysis, which presuppose sequential and stereotypical brain activations. We introduce here a methodology that can effectively deal with sequential and distributed activity. Regional brain activations elicited by electrical median nerve(More)
It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well(More)
Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two(More)
In current clinical practice the degree of paraplegia or quadriplegia is objectively determined with transcranial magnetic stimulation (TMS) and somatosensory-evoked potentials (SSEP). We measured the MEG signal following electrical stimulation of upper and lower limbs in two normal and three clinically complete paraplegic subjects. From the MEG signal we(More)
All sleep stages contain epochs with high-amplitude electrophysiological phasic events, alternating with quieter "core periods." High-amplitude and core state properties cannot be disentangled with PET and fMRI. Here from high temporal resolution magnetoencephalography data, regional changes in neuronal activity were extracted during core periods in(More)
The echoic memory trace (EMT) refers to neuronal activity associated with the short-term retention of stimulus-related information, especially within the primary and association auditory cortex. Using magnetoencephalography it is possible to determine quantitatively the lifetime of the EMT. Previous studies assumed that each new stimulus drives the EMT to(More)
The spatiotemporal profiles of visual processing are normally distributed in two temporal phases, each lasting about 100 ms. Within each phase, cortical processing begins in V1 and traverses the visual cortical hierarchy. However, the causal role of V1 in starting each of these two phases is unknown. Here we used magnetoencephalography to study the(More)