Libor Machala

Learn More
Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.
Owing to Mössbauer spectroscopy, an advanced characterization technique for iron-containing materials, the present study reveals previously unknown possibilities using l-amino acids for the generation of magnetic particles. Based on our results, a simple choice of the order of l-amino acids addition into a reaction mixture containing ferrous ions leads to(More)
The syntheses of amorphous Fe(2)O(3) nanoparticles of varying size and morphology, their magnetic properties, crystallization mechanism, and applications are reviewed herein. The synthetic routes are classified according to the nature of the sample (powders, nanocomposites, films, coated particles). The contributions of various experimental techniques to(More)
Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy.(More)
Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in(More)
For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for(More)
Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) Mössbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine(More)
An iron compound of +6 oxidation state (Fe(VI)O4(2-), Fe(vi)) is a green molecule for various applications (water oxidation catalyst, organic transformation for synthesis, and water remediation agent). However, its use is hindered because of its inherent decay in aqueous solution. This study presents a systematic kinetics investigation of the decay of(More)
Uniform high-quality iron oxide thin films can be formed from the spin coating of iron oxide/hydroxide sol-gels on a silicon substrate. Thermal processing of the films at temperatures of approximately 300 degrees C results in the transformation of films into a ternary layered structure with iron oxide, Fe(2)O(3), at the surface, characterized by Mossbauer(More)