Lianrong Wang

Learn More
The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a(More)
Phosphorothioate (PT) modification of DNA, with sulfur replacing a nonbridging phosphate oxygen, was recently discovered as a product of the dnd genes found in bacteria and archaea. Given our limited understanding of the biological function of PT modifications, including sequence context, genomic frequencies, and relationships to the diversity of dnd gene(More)
BACKGROUND A novel DNA phosphorothioate modification (DNA sulfur modification), in which one of the non-bridging oxygen atoms in the phosphodiester bond linking DNA nucleotides is exchanged by sulphur, was found to be genetically determined by dnd or dnd-counterpart loci in a wide spectrum of bacteria from diverse habitats. A detailed mutational analysis of(More)
In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in(More)
Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across(More)
The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly(More)
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and RP stereo-specific manner. Bacteria may have acquired this physiological(More)
DNA phosphorothioate (PT) modification, in which the non-bridging oxygen of the sugar-phosphate backbone is substituted by sulfur, occurs naturally in diverse bacteria and archaea and is regulated by the DndABCDE proteins. DndABCDE and the restriction cognate DndFGHI constitute a new type of defense system that prevents the invasion of foreign DNA in(More)
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription(More)
  • 1