Learn More
Serum paraoxonase (PON1) is an esterase that is associated with high-density lipoproteins (HDLs) in the plasma; it is involved in the detoxification of organophosphate insecticides such as parathion and chlorpyrifos. PON1 may also confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids present in oxidized low-density(More)
Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions;(More)
The Farquhar-von Caemmerer-Berry (FvCB) model of photosynthesis is a change-point model and structurally overparameterized for interpreting the response of leaf net assimilation (A) to intercellular CO₂ concentration (Ci). The use of conventional fitting methods may lead not only to incorrect parameters but also several previously unrecognized consequences.(More)
Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used(More)
a r t i c l e i n f o The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales.(More)
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we(More)
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus(More)
The fundamental equation of eddy covariance and its application in flux measurements" (2012). Keywords: Fundamental equation of eddy covariance WPL corrections No net ecosystem source or sink of dry air Effective change in storage a b s t r a c t A fundamental equation of eddy covariance (FQEC) is derived that allows the net ecosystem exchange (NEE) N s of(More)