Learn More
Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase(More)
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we(More)
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the(More)
—Characterizing vegetation phenology is a highly significant problem, due to its importance in regulating ecosystem carbon cycling, interacting with climate changes, and decision-making of croplands managements. While ground based sensors, such as the AmeriFlux sensors, can provide measurements at high temporal resolution (every hour) and can be used to(More)
Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of(More)
Understanding the climatic and biotic controls of interannual variability (IAV) in net ecosystem exchange (NEE) is important for projecting future uptake of CO2 in terrestrial ecosystems. In this study, a statistical modeling approach was used to partition climatic and biotic effects on the IAV in NEE, gross primary productivity (GPP) and ecosystem(More)
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an(More)
Northern Hemisphere terrestrial ecosystems have been recognized as areas with large carbon uptake capacity and sinks and are sensitive to temperature change. However, the temperature sensitivity of ecosystem carbon uptake phenol-ogy in different biomes of northern ecosystems has not been well explored. In this study, based on our previous effort in(More)
  • 1