Liangxiu Han

Learn More
The FireGrid project aims to harness the potential of advanced forms of computation to support the response to large-scale emergencies (with an initial focus on the response to fires in the built environment). Computational models of physical phenomena are developed, and then deployed and computed on High Performance Computing resources to infer incident(More)
(2007) Towards a grid-enabled simulation framework for nano-CMOS electronics. Abstract The electronics design industry is facing major challenges as transistors continue to decrease in size. The next generation of devices will be so small that the position of individual atoms will affect their behaviour. This will cause the transistors on a chip to have(More)
Glaucoma is a group of eye diseases that have common traits such as, high eye pressure, damage to the Optic Nerve Head and gradual vision loss. It affects peripheral vision and eventually leads to blindness if left untreated. The current common methods of pre-diagnosis of Glaucoma include measurement of Intra-Ocular Pressure (IOP) using Tonometer,(More)
Modern scientific collaborations have opened up the opportunity of solving complex problems that involve multi-disciplinary expertise and large-scale computational experiments. These experiments usually involve large amounts of data that are located in distributed data repositories running various software systems, and managed by different organisations. A(More)
FireGrid is a modern concept that aims to leverage a number of modern technologies to aid fire emergency response. In this paper we provide a brief introduction to the FireGrid project. A number of different technologies such as wireless sensor networks, grid-enabled High Performance Computing (HPC) implementation of fire models, and artificial intelligence(More)
It is of high biomedical interest to identify gene interactions and networks that are associated with developmental and physiological functions in the mouse embryo. There are now large datasets with both spatial and ontological annotation of the spatio-temporal patterns of gene-expression that provide a powerful resource to discover potential mechanisms of(More)
Understanding how occupants manage their energy use in homes and how their behaviour influence household energy consumption in domestic environments has been challenging. There seems to be several major factors contributing towards achieving optimal performance in designing, constructing and maintaining a sustainable home using Building Information(More)
Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer's disease, Parkinson's diseases, and autism). In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological(More)