Liangbing Wang

Learn More
Lactococcus lactis-phosphoglucomutase (-PGM) catalyzes the interconversion of-D-glucose 1-phosphate (-G1P) and-D-glucose 6-phosphate (G6P), forming-D-glucose 1,6-(bis)phosphate (-G16P) as an intermediate.-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has(More)
The phosphotransferases of the haloalkanoate dehalogenase superfamily (HADSF) act upon a wide range of metabolites in all eukaryotes and prokaryotes and thus constitute a significant force in cell function. The challenge posed for biochemical function assignment of HADSF members is the identification of the structural determinants that target a specific(More)
Activated Lactococcus lactis beta-phosphoglucomutase (betaPGM) catalyzes the conversion of beta-d-glucose 1-phosphate (betaG1P) derived from maltose to beta-d-glucose 6-phosphate (G6P). Activation requires Mg(2+) binding and phosphorylation of the active site residue Asp8. Initial velocity techniques were used to define the steady-state kinetic constants(More)
Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation.(More)
The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved(More)
  • 1