Learn More
Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux statistics and congestion analysis, detection of anomalous behaviors,(More)
Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk. In this paper, a simple but efficient gait recognition algorithm using spatial-temporal silhouette analysis is proposed. For each image sequence,(More)
Human actions can be represented by the trajectories of skeleton joints. Traditional methods generally model the spatial structure and temporal dynamics of human skeleton with hand-crafted features and recognize human actions by well-designed classifiers. In this paper, considering that recurrent neural network (RNN) can model the long-term contextual(More)
Visual analysis of human motion is currently one of the most active research topics in computer vision. This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality, smart surveillance, perceptual interface, etc. Human motion analysis concerns the detection, tracking and recognition of people, and more(More)
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of these hashing methods are designed to handle simple binary similarity. The complex multi-level semantic(More)
We describe a probabilistic framework for recognizing human activities in monocular video based on simple silhouette observations in this paper. The methodology combines kernel principal component analysis (KPCA) based feature extraction and factorial conditional random field (FCRF) based motion modeling. Silhouette data is represented more compactly by(More)
In this paper, we learn explicit representations for dynamic shape manifolds of moving humans for the task of action recognition. We exploit locality preserving projections (LPP) for dimensionality reduction, leading to a low-dimensional embedding of human movements. Given a sequence of moving silhouettes associated to an action video, by LPP, we project(More)
Gait recognition has recently gained significant attention from computer vision researchers. This interest is strongly motivated by the need for automated person identification systems at a distance in visual surveillance and monitoring applications. The paper proposes a simple and efficient automatic gait recognition algorithm using statistical shape(More)
Cross-modal matching has recently drawn much attention due to the widespread existence of multimodal data. It aims to match data from different modalities, and generally involves two basic problems: the measure of relevance and coupled feature selection. Most previous works mainly focus on solving the first problem. In this paper, we propose a novel coupled(More)
Image classification is a hot topic in computer vision and pattern recognition. Feature coding, as a key component of image classification, has been widely studied over the past several years, and a number of coding algorithms have been proposed. However, there is no comprehensive study concerning the connections between different coding methods, especially(More)