Learn More
Canonical Correlation Analysis (CCA) is a well-known technique for finding the correlations between two sets of multidimensional variables. It projects both sets of variables onto a lower-dimensional space in which they are maximally correlated. CCA is commonly applied for supervised dimensionality reduction in which the two sets of variables are derived(More)
Rapid advances in neuroimaging techniques provide great potentials for study of Alzheimer's disease (AD). Existing findings have shown that AD is closely related to alteration in the functional brain network, i.e., the functional connectivity between different brain regions. In this paper, we propose a method based on sparse inverse covariance estimation(More)
A hypergraph is a generalization of the traditional graph in which the edges are arbitrary non-empty subsets of the vertex set. It has been applied successfully to capture high-order relations in various domains. In this paper, we propose a hypergraph spectral learning formulation for multi-label classification, where a hypergraph is constructed to exploit(More)
Recent advances in neuroimaging techniques provide great potentials for effective diagnosis of Alzheimer's disease (AD), the most common form of dementia. Previous studies have shown that AD is closely related to the alternation in the functional brain network, i.e., the functional connectivity among different brain regions. In this paper, we consider the(More)
Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS 2 , a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS 2 crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron(More)
It is a challenge to classify protein-coding or non-coding transcripts, especially those re-constructed from high-throughput sequencing data of poorly annotated species. This study developed and evaluated a powerful signature tool, Coding-Non-Coding Index (CNCI), by profiling adjoining nucleotide triplets to effectively distinguish protein-coding and(More)
This paper studies the sum rate performance of two low complexity eigenmode-based transmission techniques for the MIMO broadcast channel, employing greedy semi-orthogonal user selection (SUS). The first approach, termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second approach, termed ZFBF-SUS, is based on zero-forcing beamforming. We(More)
Dimensionality reduction plays an important role in many data mining applications involving high-dimensional data. Many existing dimensionality reduction techniques can be formulated as a generalized eigenvalue problem, which does not scale to large-size problems. Prior work transforms the generalized eigenvalue problem into an equivalent least squares(More)