Liang-Qiu Lu

  • Citations Per Year
Learn More
A novel cascade organocatalysis that allows efficient and rapid access to diverse and structurally complex oxazolidin-2-ones from simple starting materials and catalysts has been developed. A possible mechanism of this reaction has been proposed based on D- and 13C-labeling experiments.
Radicals are an important class of versatile and highly reactive species. Compared with the wide applications of various C-centred radicals, however, the N-radical species including N-centred radicals and radical ions remain largely unexplored due to the lack of convenient methods for their generation. In recent years, visible light photoredox catalysis has(More)
Heterocyclic structural architectures occur in many bioactive natural products and synthetic drugs, and these structural units serve as important intermediates in organic synthesis. This Account documents our recent progress in the development of cascade reactions to construct complex carbocycles and heterocycles. We describe the rational design of cascade(More)
Unprecedented chemoselective reductions of phosphine oxides to phosphines proceed smoothly in the presence of catalytic amounts of specific Brønsted acids. By utilizing inexpensive silanes, e.g., PMHS or (EtO)(2)MeSiH, other reducible functional groups such as ketones, aldehydes, olefins, nitriles, and esters are well-tolerated under optimized conditions.
An enantioselective [4 + 1] annulation/rearrangement cascade of stable sulfur ylides and nitroolefins has been developed through an efficient axial-to-central chirality transfer with the use of a chiral BINOL-derived sulfide as a reliable stereocontroller. It can provide pharmaceutically and synthetically important oxazolidinones in high stereoselectivities(More)
Splitting of alcohols into hydrogen and corresponding carbonyl compounds has potential applications in hydrogen production and chemical industry. Herein, we report that a heterogeneous photocatalyst (Ni-modified CdS nanoparticles) could efficiently split alcohols into hydrogen and corresponding aldehydes or ketones in a stoichiometric manner under visible(More)
Get asymmetric! Asymmetric [4+1] annulation of sulfur ylides and N-(ortho-chloromethyl)aryl amides allowed the formation of the desired cycloadduct with moderate to high yields and enantioselectivities (see scheme). The described strategy, taking advantage of chiral sulfur ylides, represents a direct procedure to access chiral 2-substituted indolines.